11. Create a program to implement the Newton-Raphson method for finding roots of a function.

Required Input:

Function: f(x) = x^3 - 2x - 5
 Derivative: f'(x) = 3x^2 - 2
 Initial Guess: x0 = 2

Expected Output:

Root: 2.0946

Code In R

newton_raphson <- function(f, f_prime, x0, tol) { # Your logic here } # Call the function

Run Code?

Click Run Button to view compiled output

12. Create a custom function to compute the spectral clustering of a graph.

Required Input:

Adjacency Matrix: 
 [,1] [,2] [,3]
[1,] 0 1 1
[2,] 1 0 1
[3,] 1 1 0

Expected Output:

Cluster assignments: 1, 2, 1

Code In R

spectral_clustering <- function(adj_matrix, k) { # Your logic here } # Call the function

Run Code?

Click Run Button to view compiled output

13. Write an R program to calculate the PageRank of nodes in a graph using an iterative method.

Required Input:

Adjacency Matrix: 
 [,1] [,2] [,3]
[1,] 0 1 1
[2,] 1 0 1
[3,] 1 1 0

Expected Output:

PageRank Scores: 0.3333 0.3333 0.3333

Code In R

calculate_pagerank <- function(adj_matrix, damping_factor, tol) { # Your logic here } # Call the function

Run Code?

Click Run Button to view compiled output

14. Write a function to fit a logistic regression model manually using gradient descent.

Required Input:

Data Frame: 
 x y 
1 1 0 
2 2 0 
3 3 1 
4 4 1

Expected Output:

Fitted Coefficients: -5.6964 2.3867 

Code In R

logistic_regression <- function(df, lr, iterations) { # Your logic here } # Call the function

Run Code?

Click Run Button to view compiled output

15. Implement a custom function to calculate bootstrapped confidence intervals for the mean of a dataset.

Required Input:

Dataset: c(5, 7, 9, 11, 13) 
Bootstrap Samples: 1000 
Confidence Level: 95%

Expected Output:

Confidence Interval: 6.6, 11.4

Code In R

bootstrap_ci <- function(data, num_samples, conf_level) { # Your logic here } # Call the function

Run Code?

Click Run Button to view compiled output

16. Implement a function to solve constrained optimization problems using the Lagrange multiplier method.

Required Input:

Objective Function: f(x, y) = x^2 + y^2 
 Constraint: g(x, y) = x + y - 1 = 0

Expected Output:

Optimal Solution: x = -3.802555e+42 , y = -2.459376e+42

Code In R

lagrange_optimization <- function(f, g, start) { # Your logic here } # Call the function

Run Code?

Click Run Button to view compiled output

ad vertical

2 of 2